
P, NP and NPC Notes
1

P:
- The complexity class ​P​ contains all problems that can be solved in polynomial time.

Polynomial time means O(n​k​), where k is a constant.
- Formally: P = {L | There is a TM that decides L in polynomial time.}
- Theorem 1:​ L ∈ P iff there is a polynomial-time TM for it.

Essentially, a problem is in P iff you could solve it using a TM in polynomial time.
- Note:​ If a language L is in P, then is also in P.L

I.e. P is closed under complementation.
- Here’s how you can prove that a language, L, is in P:

1. Construct a TM that decides L in polynomial time.
2. Use P’s closure properties.
3. Reduce the language to a language in P.

If A ≤​P​ B and B ∈ P, then A ∈ P.
NP:

- The complexity class ​NP​ contains all problems that can be solved in polynomial time by
an NTM.

- Formally: NP = {L | There is a NTM that decides L in polynomial time.}
- The NTMs we have seen so far always follow this pattern:

1. M = On input w:
a. Nondeterministically guess some object.
b. Deterministically check whether this was the right guess.
c. If so, accept. Otherwise, reject.

- Theorem 2:​ L ∈ NP iff there is a deterministic TM V with the following properties:
1. w ∈ L iff there is some c ∈ Σ* such that V accepts ⟨w, c⟩.
2. V runs in time polynomial in |w|.

- A TM V with the above property is called a ​polytime verifie​r for L.
- The string c is called a ​certificate ​for w.
- You can think of V as checking the certificate that proves w ∈ L.
- Important properties of V:

1. If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.
2. If V does not accept ⟨w, c⟩, then either

a. w ∈ L, but you gave the wrong c, or
b. w ∉ L, so no possible c will work.

- Important properties of the certificate, c:
1. c must be comprehensive, meaning that all yes-instances have one.
2. c must be sound, meaning that all no-instances do not have one.
3. c must be short.
4. c must be efficiently checkable.

- Here’s how you can prove that a language, L, is in NP:
1. If there is a verifier V for L, we can build a poly-time NTM for L by

nondeterministically guessing a certificate c, then running V on w.
2. If there is a poly-time NTM for L, we can build a verifier for it. The certificate is the

sequence of choices the NTM should make, and V checks that this sequence
accepts.

Note that the above 2 ways are the same.
3. If L1 ≤​P​ L2 and L2 ∈ NP, then L1 ∈ NP.

P, NP and NPC Notes
2

Here are 4 steps we can do to prove that a language, L, is in NP:
1. Show how to generate certificates for L.

We can use a NTM to generate all of the strings and say that each one is a
certificate.

2. Argue that each certificate is short in size.
3. Explain how the verifier works to validate input.
4. Argue that the verifier works in polytime.

- Theorem 3:​ P ⊆ NP
Conjecture 3.1:​ P ≠ NP and hence, P ⊂ NP.

Cook Reduction:
- Let X, Y be problems (not necessarily decision problems). X ​cook reduces​ to Y ,

denoted as X →​P​ Y if there exists a polynomial time algorithm A that solves X given an
oracle (blackbox subroutine) for Y where each use of the Y-oracle counts as 1 step.
Note:​ While using the Y-oracle counts as 1 step per use, A has to prepare input(s) to the
Y-oracle. This preparation is not part of the 1 step and is counted separately.

- Theorem 4:​ If X →​P​ Y and there exists a polynomial time algorithm for Y, then there
exists a polynomial time algorithm for X.

Karp Reduction/Polytime Reduction:
- Let X, Y ⊆ ∑​*​ be languages. X ​karp-reduces/polytime reduces​ to Y, denoted as X ≤​P

Y, iff there exists a function f: Σ​∗​ → Σ​∗​ that can be completed in polynomial time s.t. x ∈
X iff f(x) ∈ Y.

- Here’s a diagram to help with the definition.

f maps all the Yes-instances of X to a subset of the Yes-instances of Y.
Similarly, f maps all the No-instances of X to a subset of the No-instances of Y.

- Theorem 5:​ ≤​P​ is transitive.
I.e. If X ≤​P​ Y and Y ≤​P​ Z, then X ≤​P​ Z.

P, NP and NPC Notes
3

NPC:
- Y is a NP-Complete (NPC) language iff

a. Y ∈ NP
I.e. Y is in NP.

b. ∀X ∈ NP, X ≤​P​ Y
I.e. Every problem, X, in NP must be polytime reducible to Y.
This means that Y is the “hardest” in NP.

- Theorem 6:​ If Y is NPC and Y ∈ P then P=NP.
- Theorem 7:​ If Y is NPC, Z ∈ NP and Y ≤​P​ Z then Z is NPC.
- How to Prove B ∈ NPC:

1. Prove that B ∈ NP.
You can do this with an NTM or certificate.

2. Choose problem A, which is known to be NPC.
3. Describe a polytime reduction of A to B, A ≤​p​ B.

- Show how to transform any instance of A into an equivalent instance of B.
- Argue that the transformation is polytime.

