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P: 
- The complexity class ​P​ contains all problems that can be solved in polynomial time. 

Polynomial time means O(n​k​), where k is a constant. 
- Formally: P = {L | There is a TM that decides L in polynomial time.} 
- Theorem 1:​ L ∈ P iff there is a polynomial-time TM for it. 

Essentially, a problem is in P iff you could solve it using a TM in polynomial time.  
- Note:​ If a language L is in P, then is also in P.L  

I.e. P is closed under complementation. 
- Here’s how you can prove that a language, L, is in P: 

1. Construct a TM that decides L in polynomial time. 
2. Use P’s closure properties. 
3. Reduce the language to a language in P. 

If A ≤​P​ B and B ∈ P, then A ∈ P. 
NP: 

- The complexity class ​NP​ contains all problems that can be solved in polynomial time by 
an NTM. 

- Formally: NP = {L | There is a NTM that decides L in polynomial time.}  
- The NTMs we have seen so far always follow this pattern: 

1. M = On input w: 
a. Nondeterministically guess some object. 
b. Deterministically check whether this was the right guess. 
c. If so, accept. Otherwise, reject. 

- Theorem 2:​ L ∈ NP iff there is a deterministic TM V with the following properties: 
1. w ∈ L iff there is some c ∈ Σ* such that V accepts ⟨w, c⟩. 
2. V runs in time polynomial in |w|. 

- A TM V with the above property is called a ​polytime verifie​r for L. 
- The string c is called a ​certificate ​for w. 
- You can think of V as checking the certificate that proves w ∈ L. 
- Important properties of V: 

1. If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L. 
2. If V does not accept ⟨w, c⟩, then either 

a. w ∈ L, but you gave the wrong c, or 
b. w ∉ L, so no possible c will work. 

- Important properties of the certificate, c: 
1. c must be comprehensive, meaning that all yes-instances have one. 
2. c must be sound, meaning that all no-instances do not have one. 
3. c must be short. 
4. c must be efficiently checkable. 

- Here’s how you can prove that a language, L, is in NP: 
1. If there is a verifier V for L, we can build a poly-time NTM for L by 

nondeterministically guessing a certificate c, then running V on w. 
2. If there is a poly-time NTM for L, we can build a verifier for it. The certificate is the 

sequence of choices the NTM should make, and V checks that this sequence 
accepts. 

Note that the above 2 ways are the same. 
3. If L1 ≤​P​ L2 and L2 ∈ NP, then L1 ∈ NP. 
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Here are 4 steps we can do to prove that a language, L, is in NP: 
1. Show how to generate certificates for L.  

We can use a NTM to generate all of the strings and say that each one is a 
certificate. 

2. Argue that each certificate is short in size. 
3. Explain how the verifier works to validate input. 
4. Argue that the verifier works in polytime. 

- Theorem 3:​ P ⊆ NP 
Conjecture 3.1:​ P ≠ NP and hence, P ⊂ NP. 

Cook Reduction: 
- Let X, Y be problems (not necessarily decision problems). X ​cook reduces​ to Y , 

denoted as X →​P​ Y if there exists a polynomial time algorithm A that solves X given an 
oracle (blackbox subroutine) for Y where each use of the Y-oracle counts as 1 step. 
Note:​ While using the Y-oracle counts as 1 step per use, A has to prepare input(s) to the 
Y-oracle. This preparation is not part of the 1 step and is counted separately. 

- Theorem 4:​ If X →​P​ Y and there exists a polynomial time algorithm for Y, then there 
exists a polynomial time algorithm for X. 

Karp Reduction/Polytime Reduction: 
- Let X, Y ⊆ ∑​*​ be languages. X ​karp-reduces/polytime reduces​ to Y, denoted as X ≤​P 

Y, iff there exists a function f: Σ​∗​ → Σ​∗​ that can be completed in polynomial time s.t. x ∈ 
X iff f(x) ∈ Y. 

- Here’s a diagram to help with the definition. 

 
f maps all the Yes-instances of X to a subset of the Yes-instances of Y. 
Similarly, f maps all the No-instances of X to a subset of the No-instances of Y. 

- Theorem 5:​ ≤​P​ is transitive. 
I.e. If X ≤​P​ Y and Y ≤​P​ Z, then X ≤​P​ Z. 
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NPC: 
- Y is a NP-Complete (NPC) language iff 

a. Y ∈ NP 
I.e. Y is in NP. 

b. ∀X ∈ NP, X ≤​P​ Y 
I.e. Every problem, X, in NP must be polytime reducible to Y. 
This means that Y is the “hardest” in NP.  

- Theorem 6:​ If Y is NPC and Y ∈ P then P=NP. 
- Theorem 7:​  If Y is NPC, Z ∈ NP and Y ≤​P​ Z then Z is NPC. 
- How to Prove B ∈ NPC: 

1. Prove that B ∈ NP. 
You can do this with an NTM or certificate. 

2. Choose problem A, which is known to be NPC. 
3. Describe a polytime reduction of A to B, A ≤​p​ B. 

- Show how to transform any instance of A into an equivalent instance of B. 
- Argue that the transformation is polytime. 


