- <u>P:</u>
- The complexity class P contains all problems that can be solved in polynomial time. Polynomial time means O(n^k), where k is a constant.
- Formally: P = {L | There is a TM that decides L in polynomial time.}
- Theorem 1: L ∈ P iff there is a polynomial-time TM for it.
 Essentially, a problem is in P iff you could solve it using a TM in polynomial time.
- Note: If a language L is in P, then \overline{L} is also in P. I.e. P is closed under complementation.
- Here's how you can prove that a language, L, is in P:
 - 1. Construct a TM that decides L in polynomial time.
 - 2. Use P's closure properties.
 - 3. Reduce the language to a language in P. If $A \leq_P B$ and $B \in P$, then $A \in P$.

<u>NP:</u>

- The complexity class **NP** contains all problems that can be solved in polynomial time by an NTM.
- Formally: NP = {L | There is a NTM that decides L in polynomial time.}
- The NTMs we have seen so far always follow this pattern:
 - 1. M = On input w:
 - a. Nondeterministically guess some object.
 - b. Deterministically check whether this was the right guess.
 - c. If so, accept. Otherwise, reject.
 - **Theorem 2:** $L \in NP$ iff there is a deterministic TM V with the following properties:
 - 1. $w \in L$ iff there is some $c \in \Sigma^*$ such that V accepts $\langle w, c \rangle$.
 - 2. V runs in time polynomial in |w|.
- A TM V with the above property is called a **polytime verifier** for L.
- The string c is called a **certificate** for w.
- You can think of V as checking the certificate that proves $w \in L$.
- Important properties of V:
 - 1. If V accepts $\langle w, c \rangle$, then we're guaranteed $w \in L$.
 - 2. If V does not accept $\langle w, c \rangle$, then either
 - a. $w \in L$, but you gave the wrong c, or
 - b. $w \notin L$, so no possible c will work.
- Important properties of the certificate, c:
 - 1. c must be comprehensive, meaning that all yes-instances have one.
 - 2. c must be sound, meaning that all no-instances do not have one.
 - 3. c must be short.
 - 4. c must be efficiently checkable.
- Here's how you can prove that a language, L, is in NP:
 - 1. If there is a verifier V for L, we can build a poly-time NTM for L by nondeterministically guessing a certificate c, then running V on w.
 - 2. If there is a poly-time NTM for L, we can build a verifier for it. The certificate is the sequence of choices the NTM should make, and V checks that this sequence accepts.

Note that the above 2 ways are the same.

3. If $L1 \leq_{P} L2$ and $L2 \in NP$, then $L1 \in NP$.

Here are 4 steps we can do to prove that a language, L, is in NP:

- Show how to generate certificates for L. We can use a NTM to generate all of the strings and say that each one is a certificate.
- 2. Argue that each certificate is short in size.
- 3. Explain how the verifier works to validate input.
- 4. Argue that the verifier works in polytime.
- Theorem 3: $P \subseteq NP$

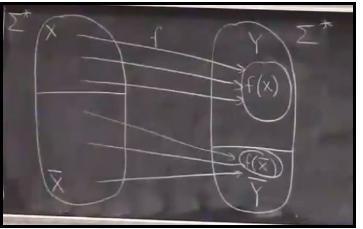
Conjecture 3.1: $P \neq NP$ and hence, $P \subset NP$.

Cook Reduction:

- Let X, Y be problems (not necessarily decision problems). X cook reduces to Y, denoted as X →_P Y if there exists a polynomial time algorithm A that solves X given an oracle (blackbox subroutine) for Y where each use of the Y-oracle counts as 1 step.
 Note: While using the Y-oracle counts as 1 step per use, A has to prepare input(s) to the Y-oracle. This preparation is not part of the 1 step and is counted separately.
- **Theorem 4:** If $X \rightarrow_P Y$ and there exists a polynomial time algorithm for Y, then there exists a polynomial time algorithm for X.

Karp Reduction/Polytime Reduction:

- Let X, Y ⊆ ∑^{*} be languages. X karp-reduces/polytime reduces to Y, denoted as X ≤_P
 Y, iff there exists a function f: Σ^{*} → Σ^{*} that can be completed in polynomial time s.t. x ∈ X iff f(x) ∈ Y.
- Here's a diagram to help with the definition.



f maps all the Yes-instances of X to a subset of the Yes-instances of Y. Similarly, f maps all the No-instances of X to a subset of the No-instances of Y.

- **Theorem 5:** \leq_P is transitive. I.e. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.

NPC:

- Y is a NP-Complete (NPC) language iff
 - a. Y ∈ NP
 - I.e. Y is in NP.
 - b. $\forall X \in NP, X \leq_P Y$ I.e. Every problem, X, in NP must be polytime reducible to Y. This means that Y is the "hardest" in NP.
- **Theorem 6:** If Y is NPC and $Y \in P$ then P=NP.
- **Theorem 7:** If Y is NPC, $Z \in NP$ and $Y \leq_P Z$ then Z is NPC.
- How to Prove $B \in NPC$:
 - 1. Prove that $B \in NP$.
 - You can do this with an NTM or certificate.
 - 2. Choose problem A, which is known to be NPC.
 - 3. Describe a polytime reduction of A to B, $A \leq_p B$.
 - Show how to transform any instance of A into an equivalent instance of B.
 - Argue that the transformation is polytime.